Dogger Bank Creyke Beck: Community Working Group

3rd May 2012

Agenda

Chairs Welcome 19.00 - 19.10Update on Converter Stations Micro-siting 19.10 - 19.30Next steps – impact assessment and mitigation 19.30 - 19.50 19.50 - 20.05AC cable route selection process Update on National Grid Works 20.05 - 20.15 Question and answer session 20.15 - 20.30 Chair's closing remarks 20.30 - 20.45

Chairs Welcome

Councillor Jump

Update on Converter Station Micro-siting

Mark Baxter

Onshore Project Manager

Refresh

- Recommendations from the Statutory Workshop and the Community Working Group have been considered in the converter station micro-siting process.
- We have reviewed the development considerations in relation to micro-siting, including:
 - Construction and Operational Noise,
 - Construction and Operational Access,
 - Drainage, and
 - Landscape and Visual Impact.
- Discussions with Landowners on preferred sector and micro-siting are ongoing
- Proposed AC Cable Corridor from Converter Station to Creyke Beck substation fixed for environmental impact assessment in May 2012
- Environmental Impact Assessment ongoing from May 2012 August 2012
- Consultation on draft Environmental Statement Autumn 2012

Sector A

 Microsite 2 x 1GW Converter Stations within Sector A

Converter Station Design Assumption

- Outdoor Equipment DC elements up to 10m in height, AC, up to 12m.
- A converter hall is a large building that houses electronic devices. Each will be up to 20m tall and will have slim metal rods up to 30m in height.
- Offices, car parking and a control building approximately 10m height;
- Access roads and fencing around the perimeter.
- Permanent landtake required for each Converter Station is 2 hectares (excludes access, mitigation and temporary works areas)

Previous Working Group Micrositing Suggestions

Microsited Options Taken Forward for Assessment

Option 1

a

Option 3

and the second

FOREWINE

Microsited Options with Access

Sector A Considerations Map

Sector A Constraints Legend

<u>CONFIDENTIAL</u>

Consideration - Rainfall Depth

Preferred Option for Environmental Impact Assessment

Benefit and Risk with Option 1

Benefit

- Ability to use existing screening along the A1079 and parcels of existing woodland;
- Lesser impact upon views to Beverley Minster from the A1079;
- Preferred from a drainage design view point (due to topography, lower rainfall flood risk and presence of existing drainage network to feed into);
- Would result in limited land severance.

Risk

- Potential effects on setting of Beverley Minster; (The surroundings in which a heritage asset is experienced)
- Detailed management of drainage to be confirmed with Environment Agency and ERoY;
- Potential impact to Model Farm;
- Temporary and Permanent Impact on Public Rights of Way due to operational access requirements.

The next steps in the development process associated with the Converter Stations are:

- Liaise with Landowners on Selection Process;
- Identify the AC cable corridor from the converter stations to Creyke Beck substation;
- Environmental Impact Assessment; and
- Consult Statutory Stakeholders and Community on Final Selection and possible mitigation.

Next steps – Environmental Impact Assessment and Mitigation

Thursday 3 May 2012

Mark Baxter - Forewind

Sam Oxley – Land Use Consultants

What is EIA?

- It's a comprehensive assessment of the potential impacts (positive and negative) that the construction, operation and decommissioning of the project may have on the environment. Includes social factors too.
- Key issues for the converter stations include:
 - 1) Landscape and visual impact
 - 2) Traffic and transport
 - 3) Noise
 - 4) Archaeology and Ecology

3 meetings to date with ERYC transport team and planning officers.

Construction Access

- Construction access off A1079 layby agreed in principle.
- Keeps construction traffic to main highway network.
- Detailed design and mitigation required to ensure safety of general public.

Operational Access

- Options discussed with ERYC in April 2012. Access likely to be off Long Lane, either past model Farm or through Beverley Parks Nature Reserve.
- Up to 10 vehicle movements a day expected (5 light vehicles in, and 5 out).
- Site essentially unmanned.
- Potential impacts of both routes being analysed.
- Both routes impact PROW, and one route impacts a local nature reserve.

- The noise assessment will assess potential noise and vibration effects on nearby houses and businesses.
- The existing background noise has been monitored at locations representative of the nearest receptors. The locations were fully agreed with Environmental Health Officers at ERYC.
- The impact assessment will take place May- July 2012 and will consider:
 - Construction of the converters, and their operation (including consideration of existing noise from Creyke Beck substation)
 - Operation of mobile and static plant equipment during construction.
 - Off-site vehicles and equipment on the public road network (e.g. vibration).

Ecology

Ecology

- Habitats, great crested newts, water voles and otters, bats, reptiles, and bird field surveys commenced in Spring 2011 and will finish in Summer 2012.
- Converter station Sector A being surveyed in 2012, therefore results not in yet.
- Potential impacts may include habitat loss and disturbance.
- A mitigation package will be agreed in consultation with Natural England and a range of non-statutory wildlife bodies, e.g. YWT, RSPB.

Archaeology

- Desk based assessment of known records complete, and was used to inform site selection.
- Geophysics of the full working area (any areas of topsoil strip) commenced in March 2012, and will continue over Summer 2012.
- Results will be discussed with the County Archaeologist, to determine further work and mitigation required.
- Mitigation examples include avoidance, or recording by trial trenching.

Landscape and Visual - Existing landscape

Model

Farm

500 Meters

200

100

300

400

Halfway House

FOREWIN

A1079

Existing landscape – PRoW

Existing site

Views from the A1079, from the south

Existing site

View from the north

View from the PRoW, from the east

Daylight Views to Beverley Minster

Glimpsed views to the Minster to Beverley Minster from the A1079

 night time flood lighting of the Minster makes it a focal point when seen from open or elevated locations in the wider landscape

 Please Note - photographs are low resolution and are indicative, for the purposes of this presentation

Daylight Views to Beverley Minster

Glimpsed views to the Minster to Beverley Minster from the A1079

Please Note - photographs are low resolution and are **indicative**, for the purposes of this presentation

Views from Beverley Minster

•View from Beverley Minster to potential Converter Station Site

•In views from the Minster, **infrastructure will be low level** and seen as part of wider landscape and so difficult to discern

•Views **from** the Minster are limited to glimpses during specially arranged roof tours.

 Photographs are low resolution and so are indicative, for the purposes of this presentation

Typical Layout

Example Converter Station - ABB ESTLINK

Example Converter Station - SIEMENS

Potential Options - Green Roofs

Example - Imaginative Designs

Potential Options - Boundaries

Potential Options - Materials

Dogger Bank: Creyke Beck: Existing and Proposed

Potential Mitigation Options?

Potential Options to Screen?

DC and AC Cable Route Options

Mark Baxter

Onshore Project Manager

DC Route Options

DC Cable Design Assumptions – 36m working width	Option 1	Option 2
Length (m)	1,035	1,128
PRoW Crossings	1	1
Drain Crossings	2	2
Gas Pipeline Crossings	0	0
Main Road Crossings	0	0
Small Lane Crossings	0	0
Railway Crossings	1	1

Development Considerations

<u>DC</u>

- **Option 1** passes to the north of the woodland parcel, crossing 2 small watercourses and a hedgerow in the east
- **Option 2** crosses between two large agricultural fields and along the eastern edge of the woodland parcel. It crosses 2 small watercourses and one hedgerow.

AC Cable Route Options

AC Cable Design Assumptions – 38m working width	Option 1	Option 2
Length (m)	1,670	1,860
PRoW Crossings	3	2
Drain Crossings	3	3
Gas Pipeline* Crossings	4	4
Main Road Crossings (A1079)	1	1
Minor Road Crossings	1	2
Railway Crossings	0	0

Development Considerations

<u>AC</u>

- Option 1 The route passes within the 500m buffer of the Highfield House Bowl Barrow Scheduled Monument and between two woodland parcels.
- It has 3 small watercourse, 3 Public Rights of Way, 1 minor road and 4 gas pipeline crossings. It also has a fluvial flood risk in this area of over 1m in depth (near the railway line).
- Option 2 passes through an identified Environmental Stewardship Scheme area for Poplar Farm.
- This route also has 2 Public Rights of Way, 3 watercourse, 2 minor road and 4 gas pipeline crossings.

- 1. Does the Working Group have any immediate thoughts on these routing options?
- 2. Are there any factors that we should consider which have not been mentioned in the options suggested?
- 3. Is there a clear preference from the options shown?

National Grid Works

David Flood – Head of Electrical - Forewind

Questions and Answers

Thank you

